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Abstract—Peculiarity rules are a new class of rules which can be discovered by searching relevance among a relatively small number

of peculiar data. Peculiarity oriented mining in multiple data sources is different from, and complementary to, existing approaches for

discovering new, surprising, and interesting patterns hidden in data. A theoretical framework for peculiarity oriented mining is

presented. Within the proposed framework, we give a formal interpretation and comparison of three classes of rules, namely,

association rules, exception rules, and peculiarity rules, as well as describe how to mine interesting peculiarity rules in multiple

databases.

Index Terms—Peculiarity oriented mining, interestingness, multidatabase mining.
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1 INTRODUCTION

THE main idea of this work can be summarized in a
phrase: peculiarity oriented discovery of interesting patterns

from multiple databases. Peculiarity represents a new inter-

pretation of interestingness, an important notion long

identified in data mining [10], [25], [26]. Peculiarity,

unexpected relationships/rules, may be hidden in a

relatively small number of data. Peculiarity rules are a

typical regularity hidden in many scientific, statistical, and

transaction databases. They may be difficult to find by
applying the standard association rule mining method due

to the requirement of large support. In contrast, peculiarity

oriented mining focuses on some interesting data (peculiar

data) in order to find novel and interesting rules (peculiar-

ity rules). The second keyword is multiple databases,

which are the objects of discovery and learning. Mainstream

KDD (Knowledge Discovery and Data Mining) research is

limited to rule discovery in a single universal relation or an
information table [1], [11]. Multidatabase mining is to mine

knowledge in multiple related information sources.
By considering the two related issues of peculiarity and

multiple databases, we propose a framework of peculiarity

oriented mining in multidatabases. The identification of

peculiarity rules, as well as algorithms of mining peculiarity

rules, will enhance the effectiveness of data mining and

extend its domain of applications.
Studies on peculiarity oriented mining can be divided

into three phases:

1. developing methods of peculiarity oriented mining,
2. extending peculiarity oriented approaches to multi-

ple data sources, and

3. enabling peculiarity oriented mining in a distributed
and cooperative mode.

In the paper, we investigate the first two phases by

concentrating on the theoretical development of a frame-

work for peculiarity oriented mining. Detailed experimental

evaluations in several different domains can be found in

related papers [20], [26], [27], [28].
The paper is organized as follows: The rest of Section 1

gives the background and motivations for peculiarity

oriented mining. Section 2 gives a formal interpretation

and comparison of three classes of rules: association rules,

exception rules, and peculiarity rules. Section 3 presents a

method of peculiarity oriented mining. Section 4 extends

the peculiarity oriented mining to multiple databases.

Finally, Section 5 gives concluding remarks.

1.1 Interestingness and Peculiarity

The purpose of data mining is to discover interesting

knowledge hidden in databases. The evaluation of interest-

ingness, such as peculiarity, surprisingness, unexpected-

ness, usefulness, and novelty, can be done in preprocessing

and/or postprocessing of the knowledge discovery process

[5], [6], [10], [25]. Evaluating in preprocessing is to select

interesting data before the knowledge discovery process;

evaluating in postprocessing is to select interesting rules

after the knowledge discovery process. Interestingness

evaluation may be either subjective or objective [10].

Subjective evaluation is user-driven. The user is asked to

explicitly specify what types of data (or rules) are

interesting and uninteresting and the system then discovers

those rules satisfying the user requirements. Objective

evaluation is data-driven. The system analyzes structures

of data and discovers rules based on certain criteria such as

predictive performance, statistical significance, and so forth.
We study a new class of rules called peculiarity rules [25].

Roughly speaking, data are peculiar if they represent a

relatively small number of objects and, furthermore, those

objects are very different from other objects in a data set.

Peculiarity rules are discovered by searching relevance

among peculiar data. A peculiarity rule has a low support

value.
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Patterns (rules) with low support have been considered
by many researchers. Two examples are the studies of
exception rules [13] and emerging patterns [4]. They share a
common feature with peculiarity rules in the sense that all
describe a relatively small number of objects. They differ in
the way in which peculiar data are collected, interpreted,
and used, as well as the interpretation of corresponding
rules. An exception rule is an amendment to, or a
clarification of, a more general rule. The peculiar data
covered by an exception rule is obtained from the subset of
data covered by the general rule. On the other hand, a
peculiarity rule stands on its own and has a common-sense
interpretation, like ordinary association rules [1], [13]. Dong
and Li proposed a framework for discovering emerging
patterns [4]. Their method is essentially a study of the
change of supports in different data sets. A large change
suggests an interesting emerging pattern. Since emerging
patterns with large supports are perhaps well-known facts,
they concentrated on emerging patterns with small sup-
ports. In particular, they suggested that patterns with low
support, such as 1 to 20 percent, can give useful new
insights about data. Unfortunately, such patterns are
difficult to discover by traditional association rule mining
methods. Their approach provides another use of peculiar
data, which is different from our consideration of peculiar-
ity rules. In general, it may be desirable to have a unified
framework within which many different uses of peculiar
data can be studied.

A notion related to peculiarity is noise, which is an
unavoidable problem in real-world databases. Although
noise may appear as peculiar data, one may identify noise
based on domain knowledge or metaknowledge of the
database. In this paper, we concentrate on syntactically
defined peculiar data, which are characterized by attribute
values and the distribution of values in a database. The task
of differentiating actual peculiar data and noise is left to
domain experts.

The success of any algorithm at identifying peculiar data
depends on the quality of the database, as well as attributes
used for such a purpose. For simplicity, we will not
consider the problem of feature selection in this paper. It
is assumed that some well-known features selection
algorithms have been applied to the data set. Our task is
thus restricted to the identification of peculiar data in a
cleaned and preprocessed data set.

1.2 Multidatabase Mining

Tasks of multidatabase mining can be divided roughly into
three levels:

1. Mining from multiple relations in a database.
Although, theoretically, any relational database with
multiple relations can be transformed into a single
universal relation, practically this can lead to many
issues such as universal relations of unmanageable
sizes, infiltration of uninteresting attributes, loss of
useful relation names, unnecessary join operations,
and inconveniences for distributed processing.

2. Mining from multiple relational databases. Some
regularities, relationships, and rules cannot be
discovered if we just search a single database simply

because useful knowledge often hides in multiple
databases [25].

3. Mining from multiple mixed-media databases.
Many real-world data sets contain more than just a
single type of data [14], [25]. How to handle such
mixed-media, multiple data sources is a new,
challenging research issue.

Multidatabase mining involves many related topics includ-
ing interestingness and relevance checking, granular com-
puting, and distributed data mining.

Liu et al. proposed a relevance measure for identifying
relevant databases as the first step for multidatabase mining
[9]. Ribeiro et al. described a way of extending the INLEN
system for multidatabase mining by the incorporation of
primary and foreign keys, as well as the development and
processing of knowledge segments [12]. Wrobel extended
the concept of foreign keys into foreign links, as multi-
database mining is also interested in getting to nonkey
attributes [16]. Aronis et al. introduced a system called
WoRLD that uses spreading activation to enable inductive
learning from multiple tables in multiple databases across
the network [2]. Dong and Li studied the change of
supports of itemsets in different databases to discover
emerging patterns [4]. Zhong et al. proposed a way for
peculiarity oriented multidatabase mining [25].

A challenge to multidatabase mining is heterogeneity.
Different databases may use different terminology and
conceptual level to define their schemes. Explicit foreign
key relationships may not exist among databases. A key
issue is therefore to find/create the relevance among
different databases. Granular computing techniques pro-
vide a useful tool for this purpose through changing
information granularity [8], [18], [21], [25].

Multidatabase mining is particularly relevant to pecu-
liarity oriented knowledge discovery. A peculiarity rule is
useful and meaningful if one can provide some explanation
or justification. In many cases, the justification of a
peculiarity rule cannot be obtained from a single database
as the explanation lies in another database [25].

1.3 An Illustrative Example

The basic ideas of peculiarity oriented mining can be
illustrated by a simple example. Given a Supermarket-Sales
relation in Table 1, one can observe the following
peculiarity rule:

rule1 : meat-saleðlowÞ ^ vegetable-saleðlowÞ^
fruits-saleðlowÞ ! turnoverðvery-lowÞ:

This rule covers data in one tuple on 30 July and it can be
easily interpreted by common-sense. Algorithms for mining
association rules and exception rules may fail to find such
useful rules. On the other hand, a manager of the super-
market may be interested in such a rule because it shows
that the turnover was a marked drop.

To discover peculiarity rules, we first search peculiar
data in the relation Supermarket-Sales. In Table 1, the values
of the attributes meat-sale, vegetable-sale, and fruits-sale on
30 July are very different from other values. Those values
are regarded as peculiar data. Furthermore, rule1 is
generated by searching relevance among peculiar data.
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We use the qualitative representation for the quantitative

values in rule1. The transformation of quantitative to

qualitative values is done by using the following back-

ground knowledge about information granularity:

Basic granules:

bg1 ¼ fhigh; low; very-lowg;
bg2 ¼ flarge; small; very-smallg;
bg3 ¼ fmany; little; very-littleg;

. . . . . . .

Specific granules:

kanto-area ¼ fTokyo; T iba; Saitama; . . .g;
chugoku-area ¼ fY amaguchi;Hiroshima; Shimane; . . .g;
yamaguchi-prefecture ¼ fUbe; Shimonoseki; . . .g;
. . . . . . .

Through granulation, quantitative conditions

meat-sale ¼ 12; vegetable-sale ¼ 10; fruits-sale ¼ 15;

and turnover ¼ 100 are replaced by the granules, “low” and

“very-low,” respectively.

2 INTERPRETATION OF RULES

This section discusses a formal interpretation and compar-

ison of three classes of rules: association rules, exception rules,

and peculiarity rules.

2.1 A Framework for the Interpretation of Rules

Typically, a rule can be expressed in the form �)  , where

� and  are formulas of certain language used to describe

objects (tuples) in the database. We adopt the decision logic

language (DL-language) studied by Pawlak [11], in Tarski’s

style through the notions of a model and satisfiability. The

model is a database S consisting of a finite set of objects U .

An object x 2 U either satisfies a formula �, written x �S �
or, in short, x � �, or does not satisfy the formula, written

:x � �. The satisfiability depends on the semantic inter-

pretation of expressions and must be defined by a particular

rule mining method. In general, it should satisfy the

following conditions [11]:

1. x � :� iff not x � �,
2. x � � ^  iff x � � and x �  ,
3. x � � _  iff x � � or x �  ,
4. x � �!  iff x � :� _  , and
5. x � � �  iff x � �!  and x �  ! �,

where :, ^, _, ! , and � are standard logical connectives.
If � is a formula, the set mSð�Þ defined by:

mSð�Þ ¼ fx 2 U j x � �g ð1Þ

is called the meaning of the formula � in S. If S is
understood, we simply write mð�Þ. Obviously, the follow-
ing properties hold [11]:

1. mð:�Þ ¼ ÿmð�Þ,
2. mð� ^  Þ ¼ mð�Þ \mð Þ,
3. mð� _  Þ ¼ mð�Þ [mð Þ,
4. mð�!  Þ ¼ ÿmð�Þ [mð Þ,
5. mð� �  Þ ¼ ðmð�Þ \mð ÞÞ [ ðÿmð�Þ \ ÿmð ÞÞ.

The meaning of a formula � is the set of all objects having the
property expressed by the formula �. Conversely, � can be
viewed as a description of the set of objects mð�Þ. Thus, a
connection between formulas and subsets ofU is established.

A formula � is said to be true in a database S, written
�S �, if and only if mð�Þ ¼ U , namely, � is satisfied by all
objects in the universe. Two formulas � and  are
equivalent in S if and only if mð�Þ ¼ mð Þ. By definition,
the following properties hold [11]:

1. �S � iff mð�Þ ¼ U ,
2. �S :� iff mð�Þ ¼ ;,
3. �S �!  iff mð�Þ � mð Þ, and
4. �S � �  iff mð�Þ ¼ mð Þ.

Thus, we can study the relationships between concepts
described by formulas based on the relationships between
their corresponding sets of objects.

A rule �)  can be interpreted by logical implication,
namely, the symbol) is interpreted as the logical implica-
tion! . In most cases, the expression �!  may not be true
in a database. Only certain objects satisfy the expression
�!  . The ratio of objects satisfying �!  can be used to
define a quantitative measure of the strength of the rule:

T ð�)  Þ ¼ jmð�!  Þj
jU j ; ð2Þ

where j � j denotes the cardinality of a set. It measures the
degree of truth of the expression �!  in a database. A
problem with the logical implication interpretation can be
seen as follows: For an object, if it does not satisfy �, by
definition, it satisfies �!  . Thus, even if the degree of
truth of �!  is very high, we may not conclude too much
on the satisfiability of  given the object satisfies �. In
reality, we want to know the satisfiability of  under the
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condition that � is satisfied. In other words, our main
concern is the satisfiability of  in the subset mð�Þ.
Obviously, logical implication is inappropriate in this case.

2.2 Probabilistic Interpretations of Rules

In data mining, rules are typically interpreted in terms of
probability. A detailed analysis of probability related
measures associated with rules has been given by Yao
and Zhong [19]. The characteristics of a rule �)  can be
summarized by Table 2. The contingency table has been
used by many researchers in data mining [15], [19], [22].
From the contingency table, different measures can be
defined to reflect various aspects of rules.

The generality of � is defined by:

Gð�Þ ¼ jmð�ÞjjU j ¼
aþ b
n

; ð3Þ

which indicates the relative size of the concept �. A
concept is more general if it covers more instances of the
universe. If Gð�Þ ¼ �, then ð100�Þ percent of objects in U
satisfy �. The quantity may be viewed as the probability
of a randomly selected object satisfying �. Obviously, we
have 0 � Gð�Þ � 1.

The absolute support of  provided by � is the quantity:

ASð�)  Þ ¼ ASð j�Þ ¼ jmð Þ \mð�Þjjmð�Þj ¼ a

aþ b : ð4Þ

The quantity, 0 � ASð j�Þ � 1, shows the degree to which �
implies  . If ASð j�Þ ¼ �, then ð100�Þ percent of objects
satisfying � also satisfy  . It may be viewed as the
conditional probability of a randomly selected object
satisfying  given that the object satisfies �. The change of
support of  provided by � is defined by

CSð�)  Þ ¼ CSð j�Þ ¼ ASð j�Þ ÿGð Þ ¼ a

aþ bÿ
aþ c
n

:

ð5Þ

The change of support varies from ÿ1 to 1. One may
consider Gð Þ to be the prior probability of  and ASð j�Þ
the posterior probability of  after knowing �. The
difference of posterior and prior probabilities represents
the change of our confidence regarding whether � actually
relates to  . For a positive value, one may say that � is
positively related to  ; for a negative value, one may say
that � is negatively related to  .

The generality Gð Þ is related to the satisfiability of  by
all objects in the database and ASð�)  Þ is related to the
satisfiability of  in the subset mð�Þ. A high ASð�)  Þ

does not necessarily suggest a strong association between �

and  as a concept  with a large Gð Þ value tends to have a
large ASð�)  Þ value. The change of support CSð�)  Þ
may be more accurate.

2.3 Comparison of Association Rules, Exception
Rules, and Peculiarity Rules

Within the proposed framework, we can easily analyze the
ordinary association rules by a slightly different formula-
tion. Let I denote a set of items and T denote a set of
transactions. For each item i 2 I, we define an atomic
expression Ffig ¼ ði ¼ 1Þ with the satisfiability given by
t 2 T ,

t � Ffig iff t contains i; ð6Þ

and

mðFfigÞ ¼ ft 2 T j t contains ig: ð7Þ

For each subset A � I, we define a formula FA ¼
V
i2A Ffig.

A transaction satisfies the formula FA if it contains all items
in A. For two disjoint subsets of items A and B, an
association rule can be expressed as FA ) FB. It is
interpreted as saying that a customer who purchases all
items in A tends to purchase all items in B.

Two measures, called the support and the confidence,
are used to mine association rules. They are indeed the
generality and absolute support:

suppðFA ) FBÞ ¼ GðFA ^ FBÞ ¼ GðFA[BÞ;
confðFA ) FBÞ ¼ ASðFA ) FBÞ:

ð8Þ

By specifying threshold values of support and confidence,
one can obtain all association rules whose support and
confidence are above the thresholds. Association rules can
be extended to nontransaction databases so that both the
left-hand and right-hand sides are formulas expressing
properties of objects in a database.

With an association rule, it is very tempting to relate a
large confidence with a strong association between two
concepts. However, such a connection may not exist.
Suppose we have confð�)  Þ ¼ 0:90. If we also have
Gð Þ ¼ 0:95, we can conclude that � is in fact negatively
associated with  . This suggests that an association rule
may not reflect the true association. An association rule
with low confidence may have a relatively large change of
support. In mining association rules, concepts with low
support are not considered in the search for association. On
the other hand, two concepts with low supports may have
either large confidence or a large change of support. In
summary, algorithms for mining association rules may fail
to find such useful rules. Other mining algorithms are
needed.

Exception rules have been studied as an extension of
association rules to resolve some of the above problems [13].
For an association rule �)  with high confidence, one
may associates an exception rule � ^ �0 ) : . Roughly
speaking, �0 can be viewed as the condition for exception to
rule �)  . To be consistent with the intended interpreta-
tion of the exception rule, it is reasonable to assume that
� ^ �0 ) : have a high confidence and low support. More
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specifically, we would expect a low generality of � ^ �0.
Otherwise, the rule cannot be viewed as describing
exceptional situations. Consequently, exception rules can-
not be discovered by association rule mining algorithms.

Recently, we identified and studied a new class of rules
called peculiarity rules [25], [26], [27]. In mining peculiarity
rules, one considers the distribution of attribute values.
More specifically, attention is paid to objects whose
attribute values are quite different from that of other
objects. This is referred to as peculiar data identification.
After the isolation of peculiar data, peculiarity rules with
low support and high confidence and high change of
support are searched for. Although a peculiarity rule may
share the same properties with an exception rule, as
expressed in terms of support and confidence, it does not
express exception to another rule. Semantically, they are
very different. Algorithms for mining peculiarity rules are
different from mining association rules and exception rules.
It should be realized that peculiarity rules only represent a
subset of all rules with high change of support.

Based on the above discussion, we can qualitatively
characterize association rules, exception rules, and pecu-
liarity rules as shown in Table 3. From the viewpoint of
support, both exception rules and peculiarity rules attempt
to find rules that are missed by association rule mining
methods. While exception rules and peculiarity rules have a
high change of support values, indicating a strong associa-
tion between two concepts, association rules do not
necessarily have this property. All three classes of rules
are focused on rules with a high level of absolute support.
For exception rules, it is also expected that the generality of
� ^ �0 is low. For peculiarity, the generalities of both � and
 are expected to be low. In contrast, the generality of the
right hand of an exception rule does not have to be low.

It may be argued that rules with high absolute support
and high change of support are of interest. The use of
generality (support) in association rule mining is mainly for
the sake of computational cost, rather than semantics
consideration. Exception rules and peculiarity rules are
two subsets of rules with high absolute support and high
change of support. It may be interesting to design an

algorithm to find all rules with high absolute support and

high change of support.

3 PECULIARITY ORIENTED MINING

Peculiarity rules are discovered from peculiar data eval-

uated using unified knowledge-based statistical criteria.

The main task of mining peculiarity rules is the identifica-

tion of peculiar data. Peculiar data are a subset of objects in

the database and are characterized by two features: 1) very

different from other objects in a data set and 2) consisting of

a relatively small number of objects [25], [26].
There are many ways of finding peculiar data. We

describe an attribute-oriented method which analyzes data

from a new view and is different from traditional statistical

methods.

3.1 Finding Peculiar Data

Table 4 shows a relation with attributes A1, A2; . . . ; Am. Let

xij be the value of Aj of the ith tuple and n the number of

tuples. The peculiarity of xij can be evaluated by the

Peculiarity Factor, PF ðxijÞ,

PF ðxijÞ ¼
Xn
k¼1

Nðxij; xkjÞ�; ð9Þ

956 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 4, JULY/AUGUST 2003

TABLE 3
Qualitative Characterization of Association Rules, Exception Rules, and Peculiarity Rules

TABLE 4
A Sample Table (Relation)



where N denotes the conceptual distance, � is a parameter
which can be adjusted by a user, and � ¼ 0:5 is used as
default. Equation (9) evaluates whether xij has a low
frequency and is very different from other values xkj.

There are several advantages to the proposed method.
One can handle both continuous and symbolic attributes
based on a unified semantic interpretation. Background
knowledge represented by binary neighborhoods can be
used to evaluate the peculiarity if such background knowl-
edge is provided by a user. If X is a continuous attribute
and no background knowledge is available, in (9) we use
the distance,

Nðxij; xkjÞ ¼ jxij ÿ xkjj: ð10Þ

Table 5 shows peculiarity factor values for the attribute
ArableLand. If X is a symbolic attribute and the back-
ground knowledge for representing the conceptual dis-
tances between xij and xkj is provided by a user, the
peculiarity factor is calculated by the conceptual distances,
Nðxij; xkjÞ [8], [18], [25], [26]. The conceptual distances are
assigned to one if no background knowledge is available.

There are two major methods for testing if peculiar data
exist or not (it is called selection of peculiar data) after
calculating peculiarity factors. The first is based on a
threshold value:

threshold ¼ mean of PF ðxijÞþ
� � standard deviation of PF ðxijÞ;

ð11Þ

where � can be adjusted by a user and � ¼ 1 is used as
default. The threshold indicates that a data is a peculiar one
if its PF value is much larger than the mean of the PF set. In
other words, if PF ðxijÞ is over the threshold value, xij is a
peculiar data. By adjusting the parameter �, a user can
define suitable threshold value. The other method for
selection of peculiar data uses the chi-square test when the
data size is sufficiently large [3].

3.2 Attribute Oriented Clustering

Searching the data for a structure of natural clusters is an
important exploratory technique. Clusters can provide an
informal means of assessing interesting and meaningful
groups of peculiar data.

In the real world, there are many real-valued attributes
and symbolic-valued attributes. In order to discover
interesting knowledge, conceptual abstraction and general-
ization are necessary. Attribute oriented clustering is a useful

technique to quantize continuous values and eventually

perform conceptual abstraction [23]. It serves as an

important step of the peculiarity oriented mining process.
A key issue in clustering is the incorporation of back-

ground knowledge about information granularity. Our

approach is to provide various methods in the mining

process so that data with different features can be handled

effectively. If background knowledge about information

granularity (e.g., domain-specific ontologies) is available, it

is used for semantic-based attribute-oriented clustering.

Otherwise, the nearest-neighbor method is used for clustering

of continuous-valued attributes [3], [7].

3.3 An Algorithm

An algorithm for finding peculiar data is outlined as

follows:

Step 1. Execute attribute oriented clustering for each

attribute.

Step 2. For attributes 1 to m do

. Step 2.1. Calculate the peculiarity factor PF ðxijÞ in
(9) for all values of an attribute.

. Step 2.2. Calculate the threshold value in (11) based
on the peculiarity factor obtained in Step 2.1.

. Step 2.3. Select the data that are over the threshold
value as peculiar data.

. Step 2.4. If the current peculiarity level is enough,
then go to Step 3.

. Step 2.5. Remove peculiar data from the attribute
and, thus, we get a new data set. Then, go back to
Step 2.1.

Step 3. Change the granularity of peculiar data by using

background knowledge on information granularity if the

background knowledge is available.

The algorithm can be done in a parallel-distributed mode

for multiple attributes, relations, and databases because this

is an attribute-oriented finding method.

3.4 Relevance among Peculiar Data

A peculiarity rule is discovered by searching the relevance

among peculiar data. Let XðxÞ and Y ðyÞ be peculiar data

found in two attributes X and Y , respectively. We deal with

the following two cases:

. If both XðxÞ and Y ðyÞ are symbolic data, the
relevance between XðxÞ and Y ðyÞ is evaluated by:

R1 ¼ P ðXðxÞjY ðyÞÞP ðY ðyÞjXðxÞÞ; ð12Þ

that is, the larger the product of the probabilities, the

stronger the relevance between XðxÞ and Y ðyÞ is.
. If both XðxÞ and Y ðyÞ are continuous attributes, the

relevance between XðxÞ and Y ðyÞ is evaluated by
using the method developed in the KOSI system that
finds functional relationships [24].

Equation (12) is suitable for handling more than two

peculiar data found in more than two attributes if XðxÞ
(or Y ðyÞ) is a granule of peculiar data.

ZHONG ET AL.: PECULIARITY ORIENTED MULTIDATABASE MINING 957

TABLE 5
An Example of Peculiarity Factors for a Continuous Attribute



4 PECULIARITY ORIENTED MINING IN MULTIPLE

DATABASES

This section extends the peculiarity oriented approach for
mining multiple data sources (i.e., multidatabase mining).

4.1 Mining in Multiple Databases

Generally speaking, the tasks of multidatabase mining for
the first two levels stated in Section 1.2 can be described as
follows:

The concept of a foreign key in the relational databases
needs to be extended into a foreign link because we are also
interested in getting to nonkey attributes for data mining
from multiple relations in a database [16]. A major work is to
find peculiar data in multiple relations for a given discovery
task when foreign link relationships exist. In other words,
our task is to select n relations, which contain peculiar data,
among m relations ðm � nÞ with foreign links.

The method for selecting n relations among m relations
can be divided into the following steps:

Step 1. Focus on a relation as the main table and find peculiar
data from this table. Then, elicit peculiarity rules from
peculiar data by using the methods stated in Section 3.

Step 2. Find the value(s) of the focused key corresponding to
the mined peculiarity rule (or peculiar data) in Step 1 and
change its granularity of the value(s) of the focused key if
the background knowledge on information granularity is
available.

Step 3. Find peculiar data in the other relations (or
databases) corresponding to the value (or its granule)
of the focused key.

Step 4. Select n relations that contain peculiar data, among
m relations ðm � nÞ. In other words, we just select the
relations that contain peculiar data relevant to the
peculiarity rule mined from the main table.

A peculiarity rule can be discovered from peculiar data
hidden in multiple relations by searching relevance among
peculiar data. If peculiar data, XðxÞ and Y ðyÞ, are found in
two different relations, we need to use a value (or its
granule) in a key (or foreign key/link) as the relevance
factor, KðkÞ, to find the relevance between XðxÞ and Y ðyÞ.
Thus, the relevance between XðxÞ and Y ðyÞ is evaluated by:

R2 ¼ P1ðKðkÞjXðxÞÞP2ðKðkÞjY ðyÞÞ: ð13Þ

The above-stated methodology can be extended for
mining from multiple databases. A challenge in multi-
database mining is a semantic heterogeneity. Usually, no
explicit foreign key/link relationships exist among different
databases. The key issue of the extension is to find/create
the relevance among databases. We use granular computing
techniques, such as approximation and abstraction, for
solving the issue [8], [21].

Consider again the illustrative example of Section 1.3.
After finding that turnover experienced a marked drop in
one day from a supermarket-sale database, the manager of
the supermarket needs to know the reason for such a
peculiar case. The rule itself does not provide an answer.
On the other hand, if we search several related data sources,
such as a weather database as shown in Table 6, we can find
that there was a violent typhoon that day. This explains
why the turnover was a marked drop. For this case, the
granule of addr: ¼ Ube in Table 1 needs to be changed into
region ¼ yamaguchi for creating an explicit foreign link
between the supermarket-sales database and the weather
database.

4.2 Representation and Relearning

We use the RVER (Reverse Variant Entity-Relationship)
model to represent peculiar data and the conceptual
relationships among peculiar data discovered from multiple
relations (databases) [25]. Fig. 1 shows a graphic description
of the RVER model. In this figure, the “main entity” is the
main table/database specified by a user and the “selected
relation” is the table/database with peculiar data corre-
sponding to the mined peculiarity rule (or peculiar data) in
the main table/database.

Fig. 2 shows the framework of peculiarity oriented mining
in multiple data sources as well as a result mined from two
databases on supermarket sales at Yamaguchi prefecture
and the weather of Japan. First, focus on a relation as the main
table and find the peculiar data from this table. Then, elicit
the peculiarity rules from the peculiar data. If the data in the
main table/database is not sufficient for finding interesting
rules, search the peculiar data in the related databases. More
interesting peculiarity rules can be discovered from peculiar
data hidden in multiple relations/databases by searching the
relevance among the peculiar data.

The RVER model is different from an ordinary ER model
in that we just represent the attributes relevant to peculiar
data (or their granules) in the RVER model. The RVER
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TABLE 6
Weather

Fig. 1. The graphic description of the RVER model.



model provides all interesting information that is relevant
to learn more useful rules among multiple relations
(databases) by focusing on certain attributes. For example,
in the supermarket-sale database, we only consider the
conditions turnover ¼ very-low, region ¼ yamaguchi, and
date ¼ July-30.

In the RVER model, one can discover useful rules
through a relearning process. For example, the following
rule can be learned from the RVER model shown in Fig. 2:

rule2 : weatherðtyphoonÞ ! turnoverðvery-lowÞ:

We can see that a manager of the supermarket may be more
interested in rule2 (rather than rule1) because rule2 shows
the reason why the turnover was a marked drop.

5 CONCLUDING REMARKS

A method of mining peculiarity rules from multiple data
sources was presented. It is an effective technique of
information fusion in data mining to improve the perfor-
mance of mining results. This paper showed that peculiarity
rules represent a typically unexpected, interesting regular-
ity hidden in databases.

The subjective interestingness of association rules has
been systematically investigated by many researchers. For
example, Liu et al. studied subjective evaluation of
interestingness in postprocessing, i.e., evaluating the mined
rules [10]. In contrast, our work is about objective
evaluation of interestingness in preprocessing, i.e., selecting
interesting (peculiar) data before rule generation. Our
approach can mine a new class of patterns, called peculiarity
rules, in multiple data sources.

With respect to two levels of the multidatabase mining
tasks, i.e., mining from multiple relations in a single
database and mining from multiple relational databases,
we have used many databases, such as Japan-survey,
amino-acid data, weather, supermarket, and hepatitis, to
test our approach [20], [26], [28]. The results are very

encouraging and clearly show the usefulness and effective-
ness of the proposed approach. Currently, we are also
working on the third level of the multidatabase mining task,
that is, mining from multiple mixed-media databases, such
as fMRI brain data [17], [28], and tracking multiple people
in image sequences.

In many real-world problems, it may be more effective to
combine peculiarity oriented mining with other approaches
such as ordinary association rule mining, classification rule
mining for multiaspect analysis. Our future work includes
developing a systematic method to mine the rules from
multiple data sources where there are no explicitly foreign
key (link) relationships and to induce interesting rules from
the RVER model discovered from multiple data sources, as
well as extending our system for multiaspect analysis.
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